
Highly specific multidimensional fractionation of technical fine particle systems
Bearbeiterin: Lisa Schulz
Förderung: DFG
In the first funding period of the DFG priority program SPP 2045 "Highly specific multidimensional...
A research focus of the Institute of Particle Process Engineering of the University of Kaiserslautern is the development of methods for particle separation from liquids. The experimental and simulative experience in separation technology has been gathered for more than 10 years. It was conducted under the direction of Prof. Ripperger and will continue under his successor, Prof. Antonyuk.
The complementation of experiments with the modeling and simulation of multiphase flows is executed by numerical fluid mechanics (CFD) and CFD coupling with the discrete element method (DEM). With these methods, fundamental processes of the filtration can be investigated. Using CT-scans of the woven or nonwoven structure for the simulation can show the microflow and particle movement within the filter material.
The research of separation processes is supplemented by the classification of finest particles using dynamic filtration processes. As part of the priority programme SPP 2045: Highly specific and multidimensional fractionation of fine particle systems with technical relevance (MehrDimPart) of the DFG, the project Multidimensional fractionation of finely dispersed particles using cross-flow filtration with superimposed electric field is investigated at the Institute of Particle Process Engineering.
Bearbeiterin: Lisa Schulz
Förderung: DFG
In the first funding period of the DFG priority program SPP 2045 "Highly specific multidimensional...
Bearbeiter: Vanessa Puderbach
Förderung: AiF
This research project deals with the deformation of filter media during a fluid flow process....
Bearbeiter: Dzmitry Misiulia
Förderung: AvH
Due the rising matter of particles with a small range of size processes were needed to generate these systems. With common production processes like...
Bearbeiter: Philipp Lösch
Förderung: DFG
The physical properties of a particle collective are directly related to the particle size, particle...
Förderung: AIF - ZIM
Förderung: AIF - ZIM
Bearbeiter: Maximilian Kerner, Kilian Schmidt
Förderung: AiF
Bearbeiter: Frank Feser
Förderung: AiF
Bearbeiter: Denis Goldnik, Kai Nikolaus
Förderung: AiF
Bearbeiter: Lars Petersen
Förderung: AiF-IGF
• P. Lösch, K. Nikolaus, S. Antonyuk, Fractionating of Finest Particles Using Cross-flow Separation with Superimposed Electric Field, Separation and Purification Technology (2021) 117820. doi.org/10.1016/j.seppur.2020.117820
• Deshpande, R., Antonyuk, S., Iliev, O.: DEM-CFD study of the filter cake formation process formed due to non-spherical particles, Particuology (2020), doi.org/10.1016/j.partic.2020.01.00
• Hund, D., Lösch, P., Kerner, M., Ripperger, S, and S. Antonyuk: CFD-DEM study of bridging mechanisms at the static solid-liquid surface filtration, Powder Technology 361 (2020), 600-609 doi.org/10.1016/j.powtec.2019.11.072
• Deshpande, R.: Investigation of the Filter Cake Formation Process using DEM-CFD Simulation with Experimentally Calibrated Parameters. Stuttgart: Fraunhofer Verlag, 154 S., (2019), ISBN: 978-3-8396-1519-5
• Barth, J,: Methode zur Auslegung von Apparaten und Maschinen zur dynamischen Oberflächenfiltration, Fortschritt-Berichte ; Band 22; Technische Universität Kaiserslautern, Lehrstuhl für Mechanische Verfahrenstechnik (2019), ISBN: 978-3-95974-122-4
• Steinle, J. P.: Entwicklung und Untersuchung getauchter Niederdruck-Spiralwickel-Elemente zur Ultrafiltration, Fortschritt-Berichte, Band 21, Technische Universität Kaiserslautern, Lehrstuhl für Mechanische Verfahrenstechnik (2019), ISBN: 978-3-95974-119-4
• Hund, D.: Methoden zur Simulation der Kuchenfiltration, Fortschritt-Berichte, Band 19, Technische Universität Kaiserslautern, MVT, Lehrstuhl für Mechanische Verfahrenstechnik (2019), ISBN: 978-3-95974-111-8
• Lösch, P., Nikolaus, K., Antonyuk, S.: Classification of fine particles using the hydrodynamic forces in the boundary layer of a membrane, Chemie Ingenieur Technik 91 (2019) 11, 1656-1662. dx.doi.org/10.1002/cite.201900052
• Deshpande, R., Antonyuk, S., Iliev, O.: Study of the filter cake formed due to the sedimentation of mono and bi-dispersed particles using DEM-CFD simulations, AIChE Journal 65, (2019) 4, 1294-1303 doi.org/10.1002/aic.16529
• Ripperger, S.; Schwarz, N.; Antonyuk, S.: Scaling und Fouling Observation bei Membrananlagen. Filtrieren und Separieren 33 (6) (2019), pp. 386–391
• Kleffner, C., Braun, G., Antonyuk, S: Influence of membrane intrusion on permeate-sided pressure drop during high-pressure reverse osmosis, Chemie Ingeniuer Technik 91 (2019) 4, 1-13 doi.org/10.1002/cite.201800104
• Deshpande, R.; Antonyuk, S.; Iliev, O. (2019): Study of the Filter Cake Formed due to the Sedimentation of Mono and Bi-dispersed Particles Using DEM-CFD Simulations. In AIChE J (accepted). Doi.org/10.1002/aic.16529
• Barth, J.; Koras, T.; Antonyuk, S.; Ripperger, S.: Metallrückgewinnung und Säureaufbereitung unter Nutzung von Membranverfahren. In Filtrieren und Separieren 32 (4) (2018), pp. 264–269
• Barth, J.; Ripperger, S. (2018a): Methode zur Auslegung und Optimierung von dynamischen Oberflächenfiltern – Teil 1: Auslegung hinsichtlich des spezifischen Filtratstroms. In Filtrieren und Separieren 32 (1), pp. 12–17.
• Barth, J.; Ripperger, S. (2018b): Methode zur Auslegung und Optimierung von dynamischen Oberflächenfiltern – Teil 2: Optimierung hinsichtlich des spezifischen Energiebedarfs. In Filtrieren und Separieren 32 (3), pp. 185–189.
• Hund, D.; Schmidt, K.; Ripperger, S.; Antonyuk, S. (2018): Direct numerical simulation of cake formation during filtration with woven fabrics. In Chemical Engineering Research and Design 139, pp. 26–33. DOI: 10.1016/j.cherd.2018.09.023
Measurement of the mechanical solid-liquid-separation by cake filtration
Setup according VD 2762
Measurement of compressible filter cakes
Inhouse developed compression-permeability cell
Cross-flow filtration
Multiple experimental setups for tubular or flow-channel membranes. Superimposed electric field or backflush analysis.
Rotating disc filters
Single or multi-shift filters
Filter Media analysis
SEM (Phenom G2 Pro)
Computer-Micro-Tomograph (µ-CT, Werth)
Measurement of the pore size distribution from porous media(Porometer Model PSM 165, Topas GmbH))
Zeta-potential of bulk and woven materials (IKA, Anton-Paar)
Contact angle measuring device
Measurement of wetting properties from surfaces contacted by aerosol droplets
High speed cameras
Measurement of particle / droplet trajectories
Particle size measurement from 1 nm to 3 mm
static light scattering (Horiba LA 950, Retsch)
dynamic light scattering (Zetasizer Nano ZS, Malvern)
particle counter (Abakus, Markus Klotz GmbH)
containment sensors (Hydac)
Particle property measurement
Measurement of bulk porosity (Ultra-Pycnometer Model 1000T, Quantachrome)
Measurement of the inner surface from porous media (BET-Analysis Model Nova 200e, Quantachrome)
Measurement of the zeta-potential (Zetasizer Nano ZS, Malvern & PCD-05, Mütek)
Analytical centrifuge (LUMiSizer, LUM GmbH)
Dispersion Analysis
• CFD Simulation
• 4 ways coupled CFD-DEM and resolved Lattice-Boltzmann-DEM
• Coupled CFD-DEM