Lehrstuhl für Mechanische Verfahrenstechnik (MVT)

Liquid-Solid Separation

A research focus of the Institute of Particle Process Engineering of the University of Kaiserslautern is the development of methods for particle separation from liquids. The experimental and simulative experience in separation technology has been gathered for more than 10 years. It was conducted under the direction of Prof. Ripperger and will continue under his successor, Prof. Antonyuk.
The complementation of experiments with the modeling and simulation of multiphase flows is executed by numerical fluid mechanics (CFD) and CFD coupling with the discrete element method (DEM). With these methods, fundamental processes of the filtration can be investigated. Using CT-scans of the woven or nonwoven structure for the simulation can show the microflow and particle movement within the filter material.
The research of separation processes is supplemented by the classification of finest particles using dynamic filtration processes. As part of the priority programme SPP 2045: Highly specific and multidimensional fractionation of fine particle systems with technical relevance (MehrDimPart) of the DFG, the project Multidimensional fractionation of finely dispersed particles using cross-flow filtration with superimposed electric field is investigated at the Institute of Particle Process Engineering.



Research Areas


Research Projects


Recent Publications

  • Kleffner, C., Braun, G., Antonyuk S.: High-pressure reverse osmosis for industrial water recycling: Permeate-sided pressure drop as performance-limiting factor, Chemie Ingenieur Technik (2021), https://doi.org/10.1002/cite.202100021
  • Puderbach, V.; Schmidt, K.; Antonyuk, S.: A Coupled CFD-DEM Model for Resolved Simulation of Filter Cake Formation during Solid-Liquid Separation. In: Processes 9 (5), 2021. DOI: 10.3390/pr9050826.
  • P. Lösch, K. Nikolaus, S. Antonyuk, Fractionating of Finest Particles Using Cross-flow Separation with Superimposed Electric Field, Separation and Purification Technology (2021) 117820. doi.org/10.1016/j.seppur.2020.117820
  • Deshpande, R., Antonyuk, S., Iliev, O.: DEM-CFD study of the filter cake formation process formed due to non-spherical particles, Particuology (2020), doi.org/10.1016/j.partic.2020.01.00
  • Hund, D., Lösch, P., Kerner, M., Ripperger, S, and S. Antonyuk: CFD-DEM study of bridging mechanisms at the static solid-liquid surface filtration, Powder Technology 361 (2020), 600-609 doi.org/10.1016/j.powtec.2019.11.072
  • Deshpande, R.: Investigation of the Filter Cake Formation Process using DEM-CFD Simulation with Experimentally Calibrated Parameters. Stuttgart: Fraunhofer Verlag, 154 S., (2019), ISBN: 978-3-8396-1519-5
  • Barth, J,: Methode zur Auslegung von Apparaten und Maschinen zur dynamischen Oberflächenfiltration, Fortschritt-Berichte ; Band 22;  Technische Universität Kaiserslautern, Lehrstuhl für Mechanische Verfahrenstechnik (2019), ISBN: 978-3-95974-122-4
  • Steinle, J. P.: Entwicklung und Untersuchung getauchter Niederdruck-Spiralwickel-Elemente zur Ultrafiltration, Fortschritt-Berichte, Band 21, Technische Universität Kaiserslautern, Lehrstuhl für Mechanische Verfahrenstechnik (2019), ISBN: 978-3-95974-119-4
  • Hund, D.: Methoden zur Simulation der Kuchenfiltration, Fortschritt-Berichte, Band 19, Technische Universität Kaiserslautern, MVT, Lehrstuhl für Mechanische Verfahrenstechnik (2019), ISBN: 978-3-95974-111-8
  • Lösch, P., Nikolaus, K., Antonyuk, S.: Classification of fine particles using the hydrodynamic forces in the boundary layer of a membrane, Chemie Ingenieur Technik 91 (2019) 11, 1656-1662. dx.doi.org/10.1002/cite.201900052
  • Deshpande, R., Antonyuk, S., Iliev, O.: Study of the filter cake formed due to the sedimentation of mono and bi-dispersed particles using DEM-CFD simulations, AIChE Journal 65, (2019) 4, 1294-1303 doi.org/10.1002/aic.16529
     
  • Ripperger, S.; Schwarz, N.; Antonyuk, S.: Scaling und Fouling Observation bei Membrananlagen. Filtrieren und Separieren 33 (6) (2019), pp. 386–391
  • Kleffner, C., Braun, G., Antonyuk, S: Influence of membrane intrusion on permeate-sided pressure drop during high-pressure reverse osmosis, Chemie Ingeniuer Technik 91 (2019) 4, 1-13 doi.org/10.1002/cite.201800104
  • Deshpande, R.; Antonyuk, S.; Iliev, O. (2019): Study of the Filter Cake Formed due to the Sedimentation of Mono and Bi-dispersed Particles Using DEM-CFD Simulations. In AIChE J (accepted). Doi.org/10.1002/aic.16529
  • Barth, J.; Koras, T.; Antonyuk, S.; Ripperger, S.: Metallrückgewinnung und Säureaufbereitung unter Nutzung von Membranverfahren. In Filtrieren und Separieren 32 (4) (2018), pp. 264–269
  • Barth, J.; Ripperger, S. (2018a): Methode zur Auslegung und Optimierung von dynamischen Oberflächenfiltern – Teil 1: Auslegung hinsichtlich des spezifischen Filtratstroms. In Filtrieren und Separieren 32 (1), pp. 12–17.
  • Barth, J.; Ripperger, S. (2018b): Methode zur Auslegung und Optimierung von dynamischen Oberflächenfiltern – Teil 2: Optimierung hinsichtlich des spezifischen Energiebedarfs. In Filtrieren und Separieren 32 (3), pp. 185–189.
  • Hund, D.; Schmidt, K.; Ripperger, S.; Antonyuk, S. (2018): Direct numerical simulation of cake formation during filtration with woven fabrics. In Chemical Engineering Research and Design 139, pp. 26–33. DOI: 10.1016/j.cherd.2018.09.023

 


Laboratory Equipmemt

Measurement of the mechanical solid-liquid-separation by cake filtration

Setup according VD 2762

Measurement of compressible filter cakes

Inhouse developed compression-permeability cell

Cross-flow filtration

Multiple experimental setups for tubular or flow-channel membranes. Superimposed electric field or backflush analysis.

Rotating disc filters

Single or multi-shift filters

Filter Media analysis

SEM (Phenom G2 Pro)

Computer-Micro-Tomograph (µ-CT, Werth)

Measurement of the pore size distribution from porous media(Porometer Model PSM 165, Topas GmbH))

Zeta-potential of bulk and woven materials (IKA, Anton-Paar)


Contact angle measuring device

Measurement of wetting properties from surfaces contacted by aerosol droplets

High speed cameras

Measurement of particle / droplet trajectories

Particle size measurement from 1 nm to 3 mm

static light scattering (Horiba LA 950, Retsch)


dynamic light scattering (Zetasizer Nano ZS, Malvern)


particle counter (Abakus, Markus Klotz GmbH)


containment sensors (Hydac)

Particle property measurement

Measurement of bulk porosity (Ultra-Pycnometer Model 1000T, Quantachrome)


Measurement of the inner surface from porous media (BET-Analysis Model Nova 200e, Quantachrome)


Measurement of the zeta-potential (Zetasizer Nano ZS, Malvern & PCD-05, Mütek)

Analytical centrifuge (LUMiSizer, LUM GmbH)

Dispersion Analysis


Simulation Tools

• CFD Simulation


• 4 ways coupled CFD-DEM and resolved Lattice-Boltzmann-DEM


• Coupled CFD-DEM

Zum Seitenanfang